
Object-Oriented Design

 3 - 1

THE OBJECT MODEL

●● Programming Language Generations

●● What Is an Object (and What is Not an Object)?

●● OOP, OOD, and OOA

●● Programming Paradigms

●● No Single Paradigm

●● Elements of the Object Model

●● Benefits and Applications of the Object Model

Object-Oriented Design

 3 - 2

PROGRAMMING LANGUAGE
GENERATIONS

1950 1960 1970 1980

1954-1958: 1st Generation

1959-1961: 2nd Generation

1962-1970: 3rd Generation

Ada, C++

Gen Sample Languages Language Features

 1 FORTRAN I Mathematical expressions

 2 FORTRAN II, COBOL Subroutines, data handling

 3 Pascal, Simula Blocks, typing, classes

●● New Focus: programming in the large

●● High-order languages dominate

Object-Oriented Design

 3 - 3

PROGRAMMING LANGUAGE GENERATIONS

Evolution of Abstraction

Gen Kind of Abstraction

 1 Mathematics

 2 Algorithm and procedures

 3 Data and data models of real-world entities

Beyond Objects and object models of real-world entities

Distance
from the

Detail of
the Machine

Time and Language Evolution

1
2

3

Beyond 3

Object-Oriented Design

 3 - 4

PROGRAMMING LANGUAGE GENERATIONS

Heritage of Some Key Languages

Lang Parents

Ada ALGOL 68, Pascal, Simula, Alphard, CLU, about 20 others

CLOS Lisp, LOOPS, Flavors

C++ C, Simula

Perspective of Some Key Languages

Lang Perspective

Ada Object-based

CLOS Object-oriented

C++ Object-oriented

Object-Oriented Design

 3 - 5

PROGRAMMING LANGUAGE GENERATIONS

Topologies of Languages by Generation

1st Generation 2nd Generation

3rd Generation and Beyond

Object-Oriented Design

 3 - 6

PROGRAMMING LANGUAGE GENERATIONS

A Shift in Focus

Given that:

Verbs => Procedures and Functions

Nouns => Data

Then:

Function-oriented Program = Collection of Verbs Supported by Nouns

Object-oriented Program = Collection of Nouns Supported by Verbs

Which is a More Realistic

Model of the World?

●● A collection of functions being performed?

●● A collection of objects interacting with each other?

Object-Oriented Design

 3 - 7

WHAT IS AN OBJECT
(AND WHAT IS NOT AN OBJECT)?

An object is an integral entity which can:

●● change state

●● behave in certain discernable ways

●● be manipulated by various forms of stimuli

●● stand in relation to other objects

Objects :

●● exist, occupy space, and assume a state

●● possess attributes

●● exhibit behaviors

Object-Oriented Design

 3 - 8

OOP, OOD, and OOA

Definitions

●● Object-Oriented Programming (OOP) - a method of implementation in
which programs are organized as cooperative collections of objects,

each of which represents an instance of some class, and whose
classes are all members of a hierarchy of classes united via
inheritance relationships

●● Object-Oriented Design (OOD) - a method of design encompassing
the process of object-oriented decomposition and a notation for
depicting both logical and physical as well as static and dynamic

models of the system under design

●● Object-Oriented Analysis (OOA or OORA) - a method of analysis that
examines requirements from the perspective of the classes and
objects found in the vocabulary of the problem domain

-- Grady Booch, Object-Oriented Design with Applications, 1991, Pp 36-37

Object-Oriented Design

 3 - 9

OOP, OOD, and OOA

Object-Oriented Programming

Object-Oriented Programming (OOP) - a method of implementation in
which programs are organized as cooperative collections of objects,

each of which represents an instance of some class, and whose
classes are all members of a hierarchy of classes united via
inheritance relationships

Key parts of this definition:

●● OOP uses objects, not algorithms, as the fundamental building
blocks.

●● Each object is a member of some class.

●● Classes are related to one another via inheritance relationships.

Note: A language is object-oriented if it supports all the key parts of the
definition of OOP. A language is object-based if it supports all the
key parts except inheritance.

Object-Oriented Design

 3 - 10

OOP, OOD, and OOA

Object-Oriented Design

Object-Oriented Design (OOD) - a method of design encompassing the
process of object-oriented decomposition and a notation for

depicting both logical and physical as well as static and dynamic
models of the system under design

Key parts of this definition:

●● OOD leads to an object-oriented decomposition.

●● OOD uses different notations to express different models of the
logical (class and object structure) and physical (module and

process architecture) design of a system.

Note: OOD refers to any method that leads to an object-oriented

decomposition. Object-oriented decomposition is what makes OOD
different from structured design.

Object-Oriented Design

 3 - 11

OOP, OOD, and OOA

Object-Oriented Analysis

Object-Oriented Analysis (OOA or OORA) - a method of analysis that
examines requirements from the perspective of the classes and

objects found in the vocabulary of the problem domain

Key parts of this definition:

●● OOA uses the vocabulary of the problem domain, thereby
forming real-world models of the problem.

Object-Oriented Design

 3 - 12

OOP, OOD, and OOA

How are OOP, OOD, and OOA Related?

OOA

OOD

OOP

Artifacts

Artifacts

Builds

Used In

Builds

Used In

Is
Followed

By

Is
Followed

By

Object-Oriented Design

 3 - 13

PROGRAMMING PARADIGMS
Most programmers work in one language and use only one programming style.

They program in a paradigm enforced by the language they use.
Frequently, they have not been exposed to alternate ways of thinking about

a problem, and hence have difficulty in seeing the advantage of choosing a
style more appropriate to the problem at hand.

-- Jenkins and Glasgow, "Programming Styles in Nail," IEEE Software, Volume

3, Number 1, Page 48 (Jan 1986)

Main Kinds of Programming Paradigms

Paradigm Kinds of Abstractions Employed

Procedure-oriented Algorithms

Object-oriented Classes and objects

Logic-oriented Goals, often expressed in a predicate calculus

Rule-oriented If-then rules

Constraint-oriented Invariant relationships

Object-Oriented Design

 3 - 14

NO SINGLE PARADIGM

No Single Paradigm is Best for All
Kinds of Applications!

Each style is based on its own conceptual framework.

Examples:

●● Rule-oriented programming is best for the design of a

knowledge base.

●● Procedure-oriented programming is best for the solution of

sets of simultaneous equations.

●● Object-oriented programming is best for industrial-strength

software in which complexity is the dominant issue.

Object-Oriented Design

 3 - 15

ELEMENTS OF THE OBJECT MODEL

The Object Model is the conceptual framework for all things object-oriented.

Without this conceptual framework, you may program in a language like

C++ or Ada, but your design will "smell" like FORTRAN, Pascal, or C. Many

of the benefits of the language and its potential will be lost.

Major Elements

✓✓ Abstraction

✓✓ Encapsulation

✓✓ Modularity

✓✓ Hierarchy

Minor Elements

✓✓ Typing

✓✓ Concurrency

✓✓ Persistence

Object-Oriented Design

 3 - 16

ELEMENTS OF THE OBJECT MODEL

Abstraction

An abstraction denotes the essential characteristics of an object that
distinguish it from all other kinds of objects and thus provide

crisply defined conceptual boundaries, relative to the perspective

of the viewer.

-- Grady Booch, Object-Oriented Design with Applications, 1991,

Page 39

Behavior
of an Object

Implementation
of an Object

Abstraction
Barrier

Object-Oriented Design

 3 - 17

ELEMENTS OF THE OBJECT MODEL

Abstraction and the

Problem Domain

Deciding on the correct set of abstractions for a
given problem domain is the central problem in
object-oriented design.

"Determining the correct set of abstractions"
 is covered in detail in the next Module.

Object-Oriented Design

 3 - 18

ELEMENTS OF THE OBJECT MODEL

Kinds of Abstraction

Entity abstraction - an object that represents a useful model of an entity
in the problem domain

Action abstraction - an object that provides a generalized set of
operations, all of which perform the same kind of function

Virtual machine abstraction - an object that groups together operations

that are all used by some superior level of control or operations that
all use some junior-level set of operations

Coincidental abstraction - an object that packages a set of operations
that have no relation to each other

Object-Oriented Design

 3 - 19

ELEMENTS OF THE OBJECT MODEL

Entity Abstractions

Client - an object that uses the resources of another object

Behavior of an object - the operations that a client may perform upon
the object (the protocol of the object) and the operations that the
object may perform upon other objects

All entity abstractions may have two kinds of properties:

●● Static - fixed for the life of the object; example: a file's name or
identity

●● Dynamic - can vary during the life of the object; example: a file's
size

Object-Oriented Design

 3 - 20

ELEMENTS OF THE OBJECT MODEL

Encapsulation

Encapsulation, or Information Hiding - the process of hiding all the
details of an object that do not contribute to its essential

characteristics

-- Grady Booch, Object-Oriented Design with Applications, 1991,

Page 46

Abstraction and Encapsulation are complementary concepts:

●● Abstraction hides the implementation of an object from most
clients, focusing on the outside view of an object

●● Encapsulation prevents clients from seeing the inside view of an
object, where the behavior of the object is implemented and the
state information on the object is retained (in many cases)

Object-Oriented Design

 3 - 21

ELEMENTS OF THE OBJECT MODEL

Modularity

Modularity - the property of a system that has been decomposed into a
set of cohesive and loosely coupled modules

-- Grady Booch, Object-Oriented Design with Applications, 1991,

Page 52

Classes and objects are implemented in modules to produce the
architecture of a system.

There are two aspects to a module:

●● The interface to a module, called a specification in Ada

●● The implementation of a module, called a body in Ada

Object-Oriented Design

 3 - 22

ELEMENTS OF THE OBJECT MODEL

Issues Concerning Modularity

Technical --

●● Class and object selection - modules are the containers of the

classes and objects

●● Logically-related classes and objects grouping

●● Visibility of modules to other modules

●● Isolation of system dependencies

●● Reuse of modules across applications

●● Limits placed on the size of object code segments, particularly

when a compiler places one and only one module into one and

only one object code segment

Non-Technical --

●● Work assignments may be given on a module basis

●● Modules usually serve as configuration items

●● Some modules may require more security

Object-Oriented Design

 3 - 23

ELEMENTS OF THE OBJECT MODEL

Modules and Classes/Objects

Two entirely independent design decisions:

●● Finding the right classes and objects

●● Organizing the classes and objects into separate modules

The selection of classes and objects is a part of the logical design.

The identification of modules is a part of the physical design.

Logical and physical design decisions must take place iteratively; one
cannot be completed before the other.

Object-Oriented Design

 3 - 24

ELEMENTS OF THE OBJECT MODEL

Hierarchy

Hierarchy - the ranking or ordering of abstractions

-- Grady Booch, Object-Oriented Design with Applications, 1991,

Page 54

The two most important hierarchies in a complex system:

●● the class structure (the "kind of" hierarchy)

●● the object structure (the "part of" hierarchy)

Object-Oriented Design

 3 - 25

ELEMENTS OF THE OBJECT MODEL

Classes

Objects

Class Structure = "kind of" hierarchy

 -- inheritance --

Object Structure = "part of" hierarchy
 -- aggregation --

Two Key Hierarchies

Object-Oriented Design

 3 - 26

ELEMENTS OF THE OBJECT MODEL

Typing

Typing - the enforcement of the class of an object, such that objects
of different types may not be interchanged, or at the most, they may

be interchanged only in very restricted ways

-- Grady Booch, Object-Oriented Design with Applications, 1991,

Page 59

A type is very similar to a class. Typing allows abstractions to be
expressed in such a way that the programming language used to

implement the design can be used to enforce the design decisions.

Languages may be strongly typed, weakly typed, or untyped. All three
kinds of languages may be object-oriented or object-based.

In a strongly typed language, all expressions are guaranteed to be type
-consistent.

Object-Oriented Design

 3 - 27

ELEMENTS OF THE OBJECT MODEL

Some Benefits of Strong Typing

●● With strong type checking, many problems which could cause runtime

crashes of programs will be caught at compile time. For example, calling a

subroutine with two integer parameters when it required three integer

parameters or calling a subroutine with an integer and a string when it

required an integer and a character can be caught at compile time.

●● Early error detection afforded by strong type checking can reduce the

development time, cost, and effort. The earlier an error is caught, the better.

●● Type declarations help to document programs. The declaration of X below

is much better than the declaration of Y:

X : VELOCITY;

Y : FLOAT;

●● Many compilers can generate more efficient object code if types are

declared. In the following example, a byte may be used instead of a full

integer:

type CHAR_COUNTER is range 0 .. 128;

Object-Oriented Design

 3 - 28

ELEMENTS OF THE OBJECT MODEL

Static Typing and Dynamic Binding

Static Typing, Static Binding, or Early Binding - the types of variables

are fixed at compile time

Dynamic Binding or Late Binding - the types of variables are not known

until runtime

Combinations of strong and weak typing with static and dynamic binding

may be supported in various languages in various ways:

●● Ada supports strong typing and static binding

●● C++ supports strong typing and static or dynamic binding

●● Smalltalk has no typing but supports dynamic binding

Object-Oriented Design

 3 - 29

ELEMENTS OF THE OBJECT MODEL

Polymorphism and Typing

Polymorphism - the concept in type theory in which a single name (such
as a variable declaration) may denote objects of many different

classes that are related by some common superclass

A polymorphic object may respond to the set of operations associated

with the superclass and also the set of operations associated with its
own class.

Monomorphism is the opposite of polymorphism, so a monomorphic
object may only respond to the set of operations associated with its
own class.

Ada supports only monomorphism while C++ supports both
monomorphism and polymorphism. Polymorphism exists when the
features of inheritance and dynamic binding interact with each other.
Languages which are both strongly typed and statically bound, such

as Ada, cannot support polymorphism.

Object-Oriented Design

 3 - 30

ELEMENTS OF THE OBJECT MODEL

Concurrency

Concurrency - the property that distinguishes an active object from one
that is not active

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page

66

A single process, also known as a thread of control, is the root from
which independent dynamic action occurs within a system. Every
program has at least one thread of control, but a concurrent system
may have many threads of control, some transitory and some lasting
the lifetime of the system.

An object is an excellent candidate for a concurrent entity because:

●● it implicitly defines a unit of distribution and activity

●● it explicitly defines a communication interface

Ada supports the declaration of concurrent objects, using its task
program unit. C++ does not support concurrent objects directly, but it
can by using the UNIX fork system call.

Object-Oriented Design

 3 - 31

ELEMENTS OF THE OBJECT MODEL

Tasks as Concurrent Objects

In Ada, the Ada runtime system implements the tasking model. This

model can be implemented on one or many CPUs.

Task

-- Sample Ada Task Specification

task Event_Process is

 entry Trigger (Input : in KIND);

end Event_Process;

-- Creating two Event_Process tasks

Processor1, Processor2 : Event_Process;

Entry Point

Object-Oriented Design

 3 - 32

ELEMENTS OF THE OBJECT MODEL

Persistence

Persistence - the property of an object through which its existence

transcends time (i.e., the object continues to exist after its creator

ceases to exist) and/or space (i.e., the object's location moves from the

address space in which it was created)

-- Grady Booch, Object-Oriented Design with Applications, 1991, Page

70

An object in software takes up some amount of space and exists for a

particular amount of time. Both its state and class must persist.

The spectrum of object persistence includes:

●● Intermediate results in expression evaluation

●● Local variables created during the execution of subprograms

●● Global variables

●● Heap items that exist outside the scope of their creation

●● Data that exists between executions of a program

●● Data that outlives the program

Object-Oriented Design

 3 - 33

BENEFITS AND APPLICATIONS
OF THE OBJECT MODEL

Benefits --

●● The Object Model leads us to construct systems that embody the

five attributes of well-structured complex systems.

●● The Object Model helps us exploit the expressive power of all

object-based and object-oriented programming languages.

●● The use of the Object Model encourages reuse of both code and

designs.

●● The use of the Object Model produces systems that are built upon

stable intermediate forms, thereby being more resilient to change.

Such systems can be allowed to evolve over time.

●● The Object Model reduces the risk of developing complex systems.

●● The Object Model appeals to the workings of human cognition.

Object-Oriented Design

 3 - 34

BENEFITS AND APPLICATIONS

Selected Applications --

Air traffic control Investment strategies

Animation Mathematical analysis

Avionics Medical electronics

Banking and insurance software Music composition

Chemical process control Office automation

Command and control systems Operating systems

Computer-aided design Reusable software components

Computer-aided education Robotics

Computer integrated manufacturing Software Development Environments

Databases Space station software

Expert systems Spacecraft and aircraft simulation

Film and stage storyboarding Telecommunications and telemetry

Hypermedia User interface design

Image recognition VLSI design

